Neural Networks in Java

⚡ intermediate
⏱️ 135 minutes
👤 SuperML Team

· Java Machine Learning · 12 min read

Neural Networks in Java

SuperML Java 2.1.0 provides comprehensive support for neural networks including Multi-Layer Perceptrons (MLP), Convolutional Neural Networks (CNN), and Recurrent Neural Networks (RNN). This tutorial covers how to build, train, and deploy neural networks using Java with enterprise-grade performance.

What You’ll Learn

  • Multi-Layer Perceptron (MLP) - Deep feedforward networks for tabular data
  • Convolutional Neural Networks (CNN) - Image processing and computer vision
  • Recurrent Neural Networks (RNN) - Sequence processing with LSTM cells
  • Neural Network Preprocessing - Specialized data preparation techniques
  • Model Persistence - Saving and loading trained neural networks
  • Performance Optimization - Real-time training and inference
  • Enterprise Deployment - Production-ready neural network systems

Prerequisites

  • Completion of “Introduction to SuperML Java” and “Java ML Setup”
  • Basic understanding of linear algebra and calculus
  • Familiarity with neural network concepts
  • Java development environment with SuperML Java 2.1.0

Neural Network Architecture Overview

SuperML Java 2.1.0 provides three main types of neural networks:

import org.superml.neural.MLPClassifier;
import org.superml.neural.CNNClassifier;
import org.superml.neural.RNNClassifier;
import org.superml.preprocessing.NeuralNetworkPreprocessor;

// Multi-Layer Perceptron
MLPClassifier mlp = new MLPClassifier()
    .setHiddenLayerSizes(64, 32, 16)
    .setActivation("relu")
    .setLearningRate(0.01);

// Convolutional Neural Network
CNNClassifier cnn = new CNNClassifier()
    .setInputShape(28, 28, 1)
    .setLearningRate(0.001);

// Recurrent Neural Network
RNNClassifier rnn = new RNNClassifier()
    .setHiddenSize(64)
    .setCellType("LSTM")
    .setNumLayers(2);

Multi-Layer Perceptron (MLP)

Basic MLP Implementation

import org.superml.neural.MLPClassifier;
import org.superml.preprocessing.NeuralNetworkPreprocessor;
import org.superml.datasets.Datasets;
import org.superml.model_selection.ModelSelection;
import org.superml.metrics.Metrics;

public class MLPExample {
    public static void main(String[] args) {
        System.out.println("=== SuperML 2.1.0 - MLP Neural Network ===\n");
        
        try {
            // Load dataset
            var dataset = Datasets.loadIris();
            var split = ModelSelection.trainTestSplit(dataset.X, dataset.y, 0.2, 42);
            
            // Apply MLP preprocessing
            NeuralNetworkPreprocessor preprocessor = new NeuralNetworkPreprocessor(
                NeuralNetworkPreprocessor.NetworkType.MLP).configureMLP();
            
            double[][] XTrainProcessed = preprocessor.preprocessMLP(split.XTrain);
            double[][] XTestProcessed = preprocessor.preprocessMLP(split.XTest);
            
            System.out.println("📊 Applied MLP preprocessing: standardization + outlier clipping");
            
            // Create MLP with multiple hidden layers
            MLPClassifier mlp = new MLPClassifier()
                .setHiddenLayerSizes(128, 64, 32)  // 3 hidden layers
                .setActivation("relu")             // ReLU activation
                .setLearningRate(0.01)             // Learning rate
                .setMaxIter(200)                   // Maximum epochs
                .setBatchSize(32)                  // Mini-batch size
                .setEarlyStoppingPatience(10)      // Early stopping
                .setValidationFraction(0.2);       // Validation split
            
            System.out.println("🧠 Training MLP with architecture: 4 → 128 → 64 → 32 → 3");
            
            // Train the model
            long startTime = System.currentTimeMillis();
            mlp.fit(XTrainProcessed, split.yTrain);
            long trainingTime = System.currentTimeMillis() - startTime;
            
            // Make predictions
            double[] predictions = mlp.predict(XTestProcessed);
            
            // Evaluate performance
            double accuracy = Metrics.accuracy(split.yTest, predictions);
            double precision = Metrics.precision(split.yTest, predictions);
            double recall = Metrics.recall(split.yTest, predictions);
            double f1 = Metrics.f1Score(split.yTest, predictions);
            
            System.out.println("\n=== MLP Results ===");
            System.out.println("Training time: " + trainingTime + " ms");
            System.out.println("Accuracy: " + String.format("%.4f", accuracy));
            System.out.println("Precision: " + String.format("%.4f", precision));
            System.out.println("Recall: " + String.format("%.4f", recall));
            System.out.println("F1 Score: " + String.format("%.4f", f1));
            
            // Display training history
            double[] trainingLoss = mlp.getTrainingHistory().getLoss();
            double[] validationLoss = mlp.getTrainingHistory().getValidationLoss();
            
            System.out.println("\n📈 Training History (last 5 epochs):");
            for (int i = Math.max(0, trainingLoss.length - 5); i < trainingLoss.length; i++) {
                System.out.printf("Epoch %d: Train Loss: %.4f, Val Loss: %.4f\n", 
                    i + 1, trainingLoss[i], validationLoss[i]);
            }
            
            System.out.println("\n✅ MLP training completed successfully!");
            
        } catch (Exception e) {
            System.err.println("❌ Error in MLP training: " + e.getMessage());
            e.printStackTrace();
        }
    }
}

Advanced MLP Configuration

import org.superml.neural.MLPClassifier;
import org.superml.neural.optimizers.Adam;
import org.superml.neural.regularizers.L2Regularizer;

public class AdvancedMLPExample {
    public static void main(String[] args) {
        try {
            // Advanced MLP with custom configuration
            MLPClassifier advancedMLP = new MLPClassifier()
                .setHiddenLayerSizes(256, 128, 64, 32)
                .setActivation("relu")
                .setOutputActivation("softmax")
                .setLearningRate(0.001)
                .setOptimizer(new Adam()
                    .setBeta1(0.9)
                    .setBeta2(0.999)
                    .setEpsilon(1e-8))
                .setRegularizer(new L2Regularizer(0.01))
                .setDropoutRate(0.2)
                .setBatchSize(64)
                .setMaxIter(300)
                .setEarlyStoppingPatience(15)
                .setValidationFraction(0.15)
                .setShuffleBatches(true)
                .setVerbose(true);
            
            System.out.println("🚀 Advanced MLP Configuration:");
            System.out.println("- Architecture: 256 → 128 → 64 → 32");
            System.out.println("- Optimizer: Adam with β₁=0.9, β₂=0.999");
            System.out.println("- Regularization: L2 with λ=0.01");
            System.out.println("- Dropout: 20% during training");
            System.out.println("- Early stopping with patience=15");
            
            // Training would continue here...
            
        } catch (Exception e) {
            System.err.println("❌ Error: " + e.getMessage());
        }
    }
}

Convolutional Neural Networks (CNN)

CNN for Image Classification

import org.superml.neural.CNNClassifier;
import org.superml.preprocessing.NeuralNetworkPreprocessor;

public class CNNExample {
    public static void main(String[] args) {
        System.out.println("=== SuperML 2.1.0 - CNN for Image Classification ===\n");
        
        try {
            // Generate synthetic image data (28x28 grayscale images)
            double[][] imageData = generateImageData(1000, 28, 28);
            double[] labels = generateImageLabels(1000);
            
            // Split data
            var split = splitImageData(imageData, labels, 0.8);
            
            // Apply CNN preprocessing
            NeuralNetworkPreprocessor preprocessor = new NeuralNetworkPreprocessor(
                NeuralNetworkPreprocessor.NetworkType.CNN).configureCNN(28, 28, 1);
            
            double[][] XTrainProcessed = preprocessor.preprocessCNN(split.XTrain);
            double[][] XTestProcessed = preprocessor.preprocessCNN(split.XTest);
            
            System.out.println("🖼️ Applied CNN preprocessing: pixel normalization to [-1,1]");
            System.out.println("📊 Training samples: " + XTrainProcessed.length);
            System.out.println("📊 Test samples: " + XTestProcessed.length);
            
            // Create CNN with multiple layers
            CNNClassifier cnn = new CNNClassifier()
                .setInputShape(28, 28, 1)          // 28x28 grayscale images
                .addConvLayer(32, 3, 3, "relu")    // 32 filters, 3x3 kernel
                .addMaxPoolLayer(2, 2)             // 2x2 max pooling
                .addConvLayer(64, 3, 3, "relu")    // 64 filters, 3x3 kernel
                .addMaxPoolLayer(2, 2)             // 2x2 max pooling
                .addConvLayer(128, 3, 3, "relu")   // 128 filters, 3x3 kernel
                .addGlobalAveragePoolLayer()       // Global average pooling
                .addDenseLayer(128, "relu")        // Dense layer with 128 units
                .addDropoutLayer(0.5)              // Dropout for regularization
                .addDenseLayer(3, "softmax")       // Output layer (3 classes)
                .setLearningRate(0.001)            // Learning rate
                .setMaxEpochs(100)                 // Training epochs
                .setBatchSize(32)                  // Batch size
                .setEarlyStoppingPatience(10);     // Early stopping
            
            System.out.println("🏗️ CNN Architecture:");
            System.out.println("- Input: 28×28×1");
            System.out.println("- Conv2D(32) → MaxPool → Conv2D(64) → MaxPool → Conv2D(128)");
            System.out.println("- GlobalAvgPool → Dense(128) → Dropout(0.5) → Dense(3)");
            
            // Train the CNN
            long startTime = System.currentTimeMillis();
            cnn.fit(XTrainProcessed, split.yTrain);
            long trainingTime = System.currentTimeMillis() - startTime;
            
            // Make predictions
            double[] predictions = cnn.predict(XTestProcessed);
            
            // Evaluate performance
            double accuracy = calculateAccuracy(split.yTest, predictions);
            
            System.out.println("\n=== CNN Results ===");
            System.out.println("Training time: " + trainingTime + " ms");
            System.out.println("Test accuracy: " + String.format("%.4f", accuracy));
            
            // Display feature maps info
            System.out.println("\n🔍 Feature Maps:");
            System.out.println("- Conv Layer 1: 32 feature maps (26×26)");
            System.out.println("- Conv Layer 2: 64 feature maps (11×11)");
            System.out.println("- Conv Layer 3: 128 feature maps (4×4)");
            
            System.out.println("\n✅ CNN training completed successfully!");
            
        } catch (Exception e) {
            System.err.println("❌ Error in CNN training: " + e.getMessage());
            e.printStackTrace();
        }
    }
    
    private static double[][] generateImageData(int samples, int height, int width) {
        double[][] data = new double[samples][height * width];
        java.util.Random random = new java.util.Random(42);
        
        for (int i = 0; i < samples; i++) {
            for (int j = 0; j < height * width; j++) {
                data[i][j] = random.nextDouble(); // Pixel values 0-1
            }
        }
        return data;
    }
    
    private static double[] generateImageLabels(int samples) {
        double[] labels = new double[samples];
        java.util.Random random = new java.util.Random(42);
        
        for (int i = 0; i < samples; i++) {
            labels[i] = random.nextInt(3); // 3 classes
        }
        return labels;
    }
    
    private static DataSplit splitImageData(double[][] X, double[] y, double trainRatio) {
        int trainSize = (int) (X.length * trainRatio);
        
        double[][] XTrain = new double[trainSize][];
        double[][] XTest = new double[X.length - trainSize][];
        double[] yTrain = new double[trainSize];
        double[] yTest = new double[X.length - trainSize];
        
        System.arraycopy(X, 0, XTrain, 0, trainSize);
        System.arraycopy(X, trainSize, XTest, 0, X.length - trainSize);
        System.arraycopy(y, 0, yTrain, 0, trainSize);
        System.arraycopy(y, trainSize, yTest, 0, X.length - trainSize);
        
        return new DataSplit(XTrain, XTest, yTrain, yTest);
    }
    
    private static class DataSplit {
        final double[][] XTrain, XTest;
        final double[] yTrain, yTest;
        
        DataSplit(double[][] XTrain, double[][] XTest, double[] yTrain, double[] yTest) {
            this.XTrain = XTrain;
            this.XTest = XTest;
            this.yTrain = yTrain;
            this.yTest = yTest;
        }
    }
    
    private static double calculateAccuracy(double[] actual, double[] predicted) {
        int correct = 0;
        for (int i = 0; i < actual.length; i++) {
            if (Math.round(predicted[i]) == Math.round(actual[i])) {
                correct++;
            }
        }
        return (double) correct / actual.length;
    }
}

Recurrent Neural Networks (RNN)

RNN for Sequence Processing

import org.superml.neural.RNNClassifier;
import org.superml.preprocessing.NeuralNetworkPreprocessor;

public class RNNExample {
    public static void main(String[] args) {
        System.out.println("=== SuperML 2.1.0 - RNN for Sequence Processing ===\n");
        
        try {
            // Generate synthetic sequence data
            double[][] sequenceData = generateSequenceData(800, 30, 8);
            double[] labels = generateSequenceLabels(800);
            
            // Split data
            var split = splitSequenceData(sequenceData, labels, 0.8);
            
            // Apply RNN preprocessing
            NeuralNetworkPreprocessor preprocessor = new NeuralNetworkPreprocessor(
                NeuralNetworkPreprocessor.NetworkType.RNN).configureRNN(30, 8, false);
            
            double[][] XTrainProcessed = preprocessor.preprocessRNN(split.XTrain);
            double[][] XTestProcessed = preprocessor.preprocessRNN(split.XTest);
            
            System.out.println("📈 Applied RNN preprocessing: global scaling + temporal smoothing");
            System.out.println("📊 Sequence length: 30 timesteps");
            System.out.println("📊 Features per timestep: 8");
            System.out.println("📊 Training sequences: " + XTrainProcessed.length);
            
            // Create RNN with LSTM cells
            RNNClassifier rnn = new RNNClassifier()
                .setHiddenSize(64)                 // LSTM hidden units
                .setNumLayers(2)                   // 2 LSTM layers
                .setCellType("LSTM")               // LSTM cells
                .setDropoutRate(0.2)               // Dropout between layers
                .setBidirectional(false)           // Unidirectional
                .setSequenceLength(30)             // Input sequence length
                .setInputSize(8)                   // Features per timestep
                .setOutputSize(3)                  // Number of classes
                .setLearningRate(0.01)             // Learning rate
                .setMaxEpochs(100)                 // Training epochs
                .setBatchSize(32)                  // Batch size
                .setEarlyStoppingPatience(15)      // Early stopping
                .setGradientClipping(1.0);         // Gradient clipping
            
            System.out.println("🔄 RNN Architecture:");
            System.out.println("- Input: 30 timesteps × 8 features");
            System.out.println("- LSTM Layer 1: 64 hidden units");
            System.out.println("- LSTM Layer 2: 64 hidden units");
            System.out.println("- Dropout: 20% between layers");
            System.out.println("- Output: 3 classes");
            
            // Train the RNN
            long startTime = System.currentTimeMillis();
            rnn.fit(XTrainProcessed, split.yTrain);
            long trainingTime = System.currentTimeMillis() - startTime;
            
            // Make predictions
            double[] predictions = rnn.predict(XTestProcessed);
            
            // Evaluate performance
            double accuracy = calculateAccuracy(split.yTest, predictions);
            
            System.out.println("\n=== RNN Results ===");
            System.out.println("Training time: " + trainingTime + " ms");
            System.out.println("Test accuracy: " + String.format("%.4f", accuracy));
            
            // Display sequence processing info
            System.out.println("\n🔍 Sequence Processing:");
            System.out.println("- Total parameters: ~" + rnn.getParameterCount());
            System.out.println("- Memory cells: " + (rnn.getHiddenSize() * rnn.getNumLayers()));
            System.out.println("- Gradient clipping: " + rnn.getGradientClipping());
            
            System.out.println("\n✅ RNN training completed successfully!");
            
        } catch (Exception e) {
            System.err.println("❌ Error in RNN training: " + e.getMessage());
            e.printStackTrace();
        }
    }
    
    private static double[][] generateSequenceData(int samples, int sequenceLength, int features) {
        double[][] data = new double[samples][sequenceLength * features];
        java.util.Random random = new java.util.Random(42);
        
        for (int i = 0; i < samples; i++) {
            for (int t = 0; t < sequenceLength; t++) {
                for (int f = 0; f < features; f++) {
                    int idx = t * features + f;
                    // Create time-dependent patterns
                    data[i][idx] = Math.sin(t * 0.1 + f) + random.nextGaussian() * 0.1;
                }
            }
        }
        return data;
    }
    
    private static double[] generateSequenceLabels(int samples) {
        double[] labels = new double[samples];
        java.util.Random random = new java.util.Random(42);
        
        for (int i = 0; i < samples; i++) {
            labels[i] = random.nextInt(3); // 3 classes
        }
        return labels;
    }
    
    private static DataSplit splitSequenceData(double[][] X, double[] y, double trainRatio) {
        int trainSize = (int) (X.length * trainRatio);
        
        double[][] XTrain = new double[trainSize][];
        double[][] XTest = new double[X.length - trainSize][];
        double[] yTrain = new double[trainSize];
        double[] yTest = new double[X.length - trainSize];
        
        System.arraycopy(X, 0, XTrain, 0, trainSize);
        System.arraycopy(X, trainSize, XTest, 0, X.length - trainSize);
        System.arraycopy(y, 0, yTrain, 0, trainSize);
        System.arraycopy(y, trainSize, yTest, 0, X.length - trainSize);
        
        return new DataSplit(XTrain, XTest, yTrain, yTest);
    }
}

Model Persistence and Deployment

Saving and Loading Neural Networks

import org.superml.persistence.ModelPersistence;
import org.superml.neural.MLPClassifier;

public class NeuralNetworkPersistence {
    public static void main(String[] args) {
        try {
            // Train a neural network
            MLPClassifier mlp = new MLPClassifier()
                .setHiddenLayerSizes(128, 64, 32)
                .setActivation("relu")
                .setLearningRate(0.01)
                .setMaxIter(100);
            
            // Assume training data is available
            // mlp.fit(XTrain, yTrain);
            
            // Save model with metadata
            Map<String, Object> metadata = new HashMap<>();
            metadata.put("model_type", "MLPClassifier");
            metadata.put("architecture", "128-64-32");
            metadata.put("activation", "relu");
            metadata.put("training_samples", 1000);
            metadata.put("accuracy", 0.95);
            metadata.put("created_date", new Date().toString());
            
            String modelPath = "models/neural_network_model.superml";
            ModelPersistence.save(mlp, modelPath, "Production MLP Model", metadata);
            
            System.out.println("✅ Model saved to: " + modelPath);
            
            // Load model for inference
            MLPClassifier loadedModel = ModelPersistence.load(modelPath, MLPClassifier.class);
            
            System.out.println("✅ Model loaded successfully");
            System.out.println("🏗️ Architecture: " + Arrays.toString(loadedModel.getHiddenLayerSizes()));
            System.out.println("⚡ Activation: " + loadedModel.getActivation());
            
            // Use loaded model for predictions
            // double[] predictions = loadedModel.predict(XTest);
            
        } catch (Exception e) {
            System.err.println("❌ Error in model persistence: " + e.getMessage());
            e.printStackTrace();
        }
    }
}

Advanced Neural Network Features

Ensemble of Neural Networks

import org.superml.neural.MLPClassifier;
import org.superml.neural.CNNClassifier;
import org.superml.neural.RNNClassifier;
import org.superml.ensemble.NeuralNetworkEnsemble;

public class NeuralNetworkEnsemble {
    public static void main(String[] args) {
        try {
            // Create ensemble of different neural networks
            MLPClassifier mlp = new MLPClassifier()
                .setHiddenLayerSizes(128, 64)
                .setActivation("relu");
            
            CNNClassifier cnn = new CNNClassifier()
                .setInputShape(28, 28, 1)
                .addConvLayer(32, 3, 3, "relu")
                .addMaxPoolLayer(2, 2)
                .addDenseLayer(64, "relu");
            
            RNNClassifier rnn = new RNNClassifier()
                .setHiddenSize(64)
                .setCellType("LSTM")
                .setNumLayers(2);
            
            // Create ensemble
            NeuralNetworkEnsemble ensemble = new NeuralNetworkEnsemble()
                .addModel("mlp", mlp, 0.4)      // 40% weight
                .addModel("cnn", cnn, 0.35)     // 35% weight
                .addModel("rnn", rnn, 0.25)     // 25% weight
                .setVotingStrategy("weighted_average");
            
            System.out.println("🔗 Neural Network Ensemble:");
            System.out.println("- MLP: 40% weight");
            System.out.println("- CNN: 35% weight");
            System.out.println("- RNN: 25% weight");
            System.out.println("- Strategy: Weighted Average");
            
            // Train ensemble (each model on preprocessed data)
            // ensemble.fit(XTrain, yTrain);
            
            // Make ensemble predictions
            // double[] predictions = ensemble.predict(XTest);
            
        } catch (Exception e) {
            System.err.println("❌ Error in ensemble: " + e.getMessage());
        }
    }
}

Performance Optimization

Neural Network Performance Tips

public class NeuralNetworkOptimization {
    public static void main(String[] args) {
        System.out.println("=== Neural Network Performance Optimization ===\n");
        
        // 1. Batch Processing for High Throughput
        MLPClassifier optimizedMLP = new MLPClassifier()
            .setHiddenLayerSizes(256, 128, 64)
            .setBatchSize(128)              // Larger batch size
            .setMaxIter(50)                 // Fewer epochs
            .setEarlyStoppingPatience(5)    // Early stopping
            .setParallelTraining(true)      // Parallel processing
            .setGPUAcceleration(true);      // GPU acceleration if available
        
        // 2. Memory-Efficient Training
        CNNClassifier memoryEfficientCNN = new CNNClassifier()
            .setInputShape(224, 224, 3)
            .setBatchSize(16)               // Smaller batch for large images
            .setGradientAccumulation(4)     // Accumulate gradients
            .setMixedPrecision(true)        // Use FP16 for memory efficiency
            .setMemoryOptimization(true);
        
        // 3. Fast Inference Configuration
        RNNClassifier fastRNN = new RNNClassifier()
            .setHiddenSize(32)              // Smaller hidden size
            .setNumLayers(1)                // Single layer
            .setCellType("GRU")             // Faster than LSTM
            .setInferenceOptimization(true) // Optimize for inference
            .setBatchInference(true);       // Batch predictions
        
        System.out.println("🚀 Performance Optimizations:");
        System.out.println("- Batch processing: 128 samples/batch");
        System.out.println("- Early stopping: Prevent overfitting");
        System.out.println("- GPU acceleration: When available");
        System.out.println("- Memory optimization: FP16 precision");
        System.out.println("- Inference optimization: Fast predictions");
        
        // 4. Monitoring and Profiling
        long startTime = System.currentTimeMillis();
        
        // Training code here...
        
        long endTime = System.currentTimeMillis();
        System.out.println("\n⏱️ Training completed in: " + (endTime - startTime) + " ms");
        
        // Memory usage
        Runtime runtime = Runtime.getRuntime();
        long memoryUsed = runtime.totalMemory() - runtime.freeMemory();
        System.out.println("💾 Memory used: " + (memoryUsed / 1024 / 1024) + " MB");
    }
}

Best Practices

1. Data Preparation

  • Normalization: Always normalize input data for neural networks
  • Augmentation: Use data augmentation for image data
  • Sequence Padding: Ensure consistent sequence lengths for RNNs
  • Validation Split: Reserve data for validation during training

2. Architecture Design

  • Start Simple: Begin with smaller networks and increase complexity
  • Regularization: Use dropout and weight decay to prevent overfitting
  • Batch Normalization: Improve training stability and speed
  • Residual Connections: For very deep networks

3. Training Strategies

  • Learning Rate Scheduling: Decrease learning rate during training
  • Early Stopping: Monitor validation loss to prevent overfitting
  • Gradient Clipping: Prevent exploding gradients in RNNs
  • Checkpointing: Save model state during training

4. Production Deployment

  • Model Compression: Use pruning and quantization
  • Batch Inference: Process multiple samples together
  • Model Caching: Cache frequently used models
  • Performance Monitoring: Track inference time and accuracy

Troubleshooting Common Issues

Training Problems

// Problem: Vanishing gradients
// Solution: Use ReLU activation and proper weight initialization
MLPClassifier mlp = new MLPClassifier()
    .setActivation("relu")
    .setWeightInitialization("xavier")
    .setGradientClipping(1.0);

// Problem: Exploding gradients
// Solution: Gradient clipping
RNNClassifier rnn = new RNNClassifier()
    .setGradientClipping(1.0)
    .setLearningRate(0.001);

// Problem: Overfitting
// Solution: Regularization and dropout
CNNClassifier cnn = new CNNClassifier()
    .addDropoutLayer(0.5)
    .setL2Regularization(0.01)
    .setEarlyStoppingPatience(10);

Summary

In this tutorial, you learned:

  • MLP Implementation: Multi-layer perceptrons for tabular data
  • CNN Architecture: Convolutional networks for image processing
  • RNN with LSTM: Recurrent networks for sequence data
  • Preprocessing: Specialized data preparation for neural networks
  • Model Persistence: Saving and loading trained models
  • Performance Optimization: Tips for faster training and inference
  • Best Practices: Guidelines for production deployment

Neural networks in SuperML Java 2.1.0 provide enterprise-grade performance with real-time training capabilities. The framework handles the complexity of neural network implementation while providing you with simple, intuitive APIs.

Next Steps

  • Try XGBoost: Learn gradient boosting for tabular data
  • Explore AutoML: Automated neural architecture search
  • Model Deployment: Production deployment with inference engine
  • Advanced Preprocessing: Feature engineering for neural networks
  • Ensemble Methods: Combining multiple neural networks

You’re now ready to build sophisticated neural network applications with SuperML Java 2.1.0!

Back to Tutorials

Related Tutorials