Press ESC to exit fullscreen
πŸ—οΈ Project ⏱️ 240 minutes

Computer Vision Project

Build an advanced image classification system

Introduction

This tutorial guides you in building a complete computer vision project using advanced deep learning.

You will learn how to:

βœ… Select and prepare a dataset.
βœ… Train a CNN and apply transfer learning.
βœ… Evaluate and visualize results.
βœ… Deploy your model for inference.


Project Scope: Flower Classification

Objective: Classify flower images into their respective categories using advanced deep learning techniques.

Suggested dataset:


Project Workflow

1️⃣ Dataset preparation and augmentation.
2️⃣ Model selection (CNN and transfer learning).
3️⃣ Training and evaluation.
4️⃣ Deployment options.


1️⃣ Dataset Preparation

  • Organize images into train, validation, and test folders.
  • Apply augmentations using ImageDataGenerator:
    • Rescaling.
    • Random flips and rotations.
    • Zoom and shift augmentations.

2️⃣ Model Building with Transfer Learning

Using EfficientNetB0 (or MobileNetV2) with Keras:

from tensorflow.keras.applications import EfficientNetB0
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D
from tensorflow.keras.models import Model
from tensorflow.keras.preprocessing.image import ImageDataGenerator

# Data generators
train_datagen = ImageDataGenerator(rescale=1./255, rotation_range=20, zoom_range=0.2, horizontal_flip=True, validation_split=0.2)

train_gen = train_datagen.flow_from_directory('flowers_dataset', target_size=(224,224), batch_size=32, class_mode='categorical', subset='training')
val_gen = train_datagen.flow_from_directory('flowers_dataset', target_size=(224,224), batch_size=32, class_mode='categorical', subset='validation')

# Load pre-trained model
base_model = EfficientNetB0(weights='imagenet', include_top=False, input_shape=(224,224,3))
base_model.trainable = False

x = GlobalAveragePooling2D()(base_model.output)
output = Dense(train_gen.num_classes, activation='softmax')(x)

model = Model(inputs=base_model.input, outputs=output)

3️⃣ Training and Evaluation

model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
history = model.fit(train_gen, epochs=10, validation_data=val_gen)

Visualize accuracy:

import matplotlib.pyplot as plt

plt.plot(history.history['accuracy'], label='Train Accuracy')
plt.plot(history.history['val_accuracy'], label='Validation Accuracy')
plt.legend()
plt.title('Model Accuracy')
plt.show()

Fine-Tuning

After initial training:

βœ… Unfreeze some layers of base_model.
βœ… Re-train with a lower learning rate to improve performance.


4️⃣ Deployment Options

βœ… Convert your model using TensorFlow Lite for edge deployment.
βœ… Build a Streamlit app for interactive demo.
βœ… Use Flask or FastAPI to create a REST API for serving predictions.


Conclusion

βœ… You now know how to build an advanced computer vision project using deep learning and transfer learning techniques.
βœ… You can structure your projects from dataset preparation to deployment for real-world applications.


What’s Next?

βœ… Experiment with object detection models (YOLO, SSD).
βœ… Explore Vision Transformers for advanced CV tasks.
βœ… Learn model optimization for faster inference on edge devices.


Join our SuperML Community to share your computer vision projects and learn collaboratively with other deep learning practitioners.


Happy Building! πŸ“Έ